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Abstract 

The performances of Custom A-, D-, and I-optimal designs on non-standard second-order models are examined using the 

alphabetic A-, D-, and G-optimality efficiencies, as well as the Average Variance of Prediction. Designs of varying sizes are 

constructed with the help of JMP Pro 14 software and are customized for specified non-standard models, optimality criteria, 

prespecified experimental runs, and a specified range of input variables. The results reveal that Custom-A optimal designs 

perform generally better in terms of G-efficiency. They show high superiority to A-efficiency as the worst G-efficiency value of 

the created Custom-A optimal designs exceeds the best A-efficiency value of the designs, and also does well in terms of 

D-efficiency. Custom-D optimal designs perform generally best in terms of G-efficiency, as the worst G-efficiency value exceeds 

all A- and D-efficiency values. Custom-I optimal designs perform generally best in terms of G-efficiency as the worst 

G-efficiency value is better than the best A-efficiency value and performs generally better than the corresponding D-efficiency 

values. For the Average Variance of Prediction, Custom A- and I-optimal designs perform competitively well, with relatively low 

Average Variances of Prediction. On the contrary, the Average Variance of Prediction is generally larger for Custom-D optimal 

designs. Hence when seeking designs that minimize the variance of the predicted response, it suffices to construct Custom A-, 

D-, or I-optimal designs, with a preference for Custom-D optimal designs. 
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1. Introduction 

In most response surface experiments, the full second-order 

model is assumed to be a true approximation of the underlying 

mechanism. Montgomery noted that experimenters may have 

a foreknowledge of the process being studied, which could 

suggest the need for a non-standard model in Montgomery, 

D.C. [13]. In like manner, Gaifman, H. [2] observed that one 

may have doubts about standard models and opt for an alter-

native model. According to Myers et al. [14], non-standard 

second-order models are reduced models which is a result of 

the removal of some insignificant terms in the full se-

cond-order models. Iwundu, M. P. [7] observed that model 

fitting may reveal that not all model parameters are significant 

after data have been collected. Hence, there is a need to re-

move insignificant parameters thus resulting in a reduced 

model. Some literature on the Design of Experiments (DOE) 

sees non-standard models as models that contain different 
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types of variables (both categorical and continuous) or models 

that have underlying forms that may not comply with the 

usual standard linear models Johnson et al. [9]. 

As far back as the 20th century, Kiefer and Wolfowitz [11], 

Kiefer and Wolfowitz [12] introduced the use of computers to 

create optimal designs in most non-standard situations. Hence, 

with the availability of computers, statistical software, and 

programming languages, experimenters can go beyond the 

limitations of classical or standard designs to create optimal 

designs that align with specific experimental objectives. 

Warren F. K. [19] supported that when faced with 

non-standard situations, the computer can be used to generate 

efficient designs whereby the precision of the parameter es-

timate is maximized. Furthermore, when a suitable orthogonal 

design does not exist, computer-generated non-orthogonal 

designs can be used as a good alternative. 

Although some standard designs are robust to model mis-

specification it is necessary to use a more appropriate design, 

computer algorithms can be used to generate optimal designs 

for any specified model but with strict adherence to design 

optimality criterion depending on the goal of the experiment 

Montgomery, D.C. [13]. Computer-generated designs (CGDs) 

have also shown usefulness in mixture experiments, con-

strained design spaces, and situations where a botched ex-

periment needs to be salvaged Kiefer and Wolfowitz [11]. 

As its name, computer-generated designs are designs that 

are generated automatically using a computer algorithm or 

software programs that are based on predefined statistical 

principles and do not require manual input from the researcher. 

The software has built-in mathematical optimization tech-

niques that enable it to generate efficient experimental designs 

under given design conditions. Closely related to the com-

puter-generated design is custom design which allows ex-

perimenters to carefully choose the factors, the levels, and 

how the treatments should be arranged to solve the research 

questions effectively. Custom designs are situated in most 

high-level statistical software such as JMP and Design Expert. 

They provide a platform for flexibility in the design of ex-

periments. Custom designs involve designing an experiment 

either manually or with the help of computer programs, based 

on specific research objectives, constraints, and available 

resources in a way that allows experimenters to gather rele-

vant data to draw meaningful insights. Rather than force a 

standard design into the space of the research problem, cus-

tom designs can be readily tailored to the problem and re-

source limitations Johnson et al. [9]. Researchers can bring in 

their knowledge of the process under study and make appro-

priate adjustments based on practical considerations to effec-

tively address their research questions. 

According to Zhou and Xu [22], an essential part of process 

optimization is the need to obtain an approximation that ex-

presses the relationship between the response variable and the 

set of factors (independent variables). The second-order 

model provides a robust approximation and it is widely used 

for approximating a continuous underlying relationship be-

tween the response (𝑦) and a set of experimental factors (𝑘) 

Walsh et al. [18]. For second-order experiments, the assumed 

model is of the form 

𝑦 =  𝛽0 + ∑ 𝛽𝑖𝑥𝑖
𝑘
𝑖=1 + ∑ 𝛽𝑖𝑖𝑥𝑖𝑖

2𝑘
𝑖=1 + ∑ ∑𝛽𝑖𝑗𝑥𝑖𝑥𝑗𝑖<𝑗 +  𝜀                      (1) 

where y represents the predicted response, 𝛽0 represents the 

model intercept, 𝛽𝑖 , 𝛽𝑖𝑖 , 𝛽𝑖𝑗  are the regression coefficients 

for the linear, quadratic, and interactive effects of the model 

respectively. 

The error term (𝜀) is usually assumed to be independently 

and identically distributed with mean 0 and variance 𝛿2. The 

variables 𝑋𝑖 and 𝑋𝑗 are the factors, and could be 𝑘 dimen-

sional, where 𝑘 is the number of factors considered by the 

experimenter. The model in equation (1.1) is usually known as 

a 𝑝 parameter model and an interest could be to obtain the 

best model parameter estimate containing some desirable 

statistical properties including unbiasedness of the estimators, 

minimum variance of the estimators, etc. Interestingly, these 

properties may be easily obtained if a good design of the 

experiment is achieved. 

Standard models are intended models for a process under 

study using standard designs. However, there are certain situa-

tions when standard designs are unsuitable for expressing the 

relationship between the dependent variable and the independent 

variables in these models. Johnson et al. [9] observed that when 

the experimental problem involves unusual resource restrictions, 

when there is a presence of constraints on the design region, or 

when the model is non-standard, a standard experimental design 

becomes unfit to solve such research problem and hence an 

alternative design is required to explain the response appropri-

ately. Smucker et al. [17] stated that the presence of constraints 

in some experiments may prevent the use of standard designs. 

Akinlana D. M. [1] described some experimental conditions 

where standard designs are unsuitable such as, when the model 

of interest is in a particular order, when a smaller sample size is 

required, or when there are constraints on the design region. For 

such situations listed by Akinlana D. M. [1], Johnson et al. [9], 

and Smucker et al. [17], it is in doubt how well a standard re-

sponse surface design is appropriate. Although some standard 

response surface designs are robust to model misspecification, 

there is a need for alternative designs that are more economical 

and efficient. For example, Akinlana D. M. [1] considered the 

estimation of multiple responses using a computer algorithm 

based on D-optimality and compared the performance of the 

design to that of a Unique Factor-Central Composite Design 

(UF-CCD). 

To avoid misapplication of experimental designs when 

standard designs do not seem appropriate, it is good to opt for 

custom designs. Researchers can customize their designs in two 

ways; (i) by manually specifying the factors, levels, and other 

properties of the design or (ii) by using the custom design 
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platform in some statistical software that involves specifying 

the factors, levels, and other experimental parameters to create 

a tailored experimental design. The JMP software includes a 

platform for custom design to provide users with the flexibility 

and capability to create experimental designs that are tailored to 

their specific research objectives and constraints Akinlana D. 

M [1]. The custom design platform constructs an optimal de-

sign to fit the research problem, taking into account one’s abil-

ity to manipulate factors, constraints on factor settings, infor-

mation from covariates, and other experimental conditions and 

resource restrictions. To use the custom design platform in JMP, 

a first-step requirement is to define the goal of the experiment. 

Also, the optimality criterion must be specified as it helps to 

reflect the objective of the experiment. 

The purpose of this research is to evaluate the performance 

of custom A-, D-, and I-optimal designs for non-standard 

second-order models and this will be achieved by; 

i. Creating custom designs of varying sizes for non-standard 

second-order models based on the A-optimality criterion; 

ii. Creating custom designs of varying sizes for non-standard 

second-order models based on the D-optimality criterion; 

iii. Creating custom designs of varying sizes for non-standard 

second-order models based on the I-optimality criterion; 

and 

iv. Evaluating the quality or performance of the custom de-

signs using design efficiency metrics. 

2. Methodology 

2.1. The Experimental Models 

This research considers three non-standard models in three 

input variables and one non-standard model in four input 

variables. The non-standard models considered are; 

𝑦̂ (𝑥1, 𝑥2, 𝑥3) =  𝛽̂0 + 𝛽̂1𝑥1 + 𝛽̂2𝑥2 + 𝛽̂3𝑥3 + 𝛽̂11𝑥1
2                           (2) 

Source: Myers et al. [14]. 

𝑦̂ (𝑥1, 𝑥2, 𝑥3) =  𝛽̂0 + 𝛽̂1𝑥1 + 𝛽̂2𝑥2 + 𝛽̂3𝑥3 + 𝛽̂23𝑥2𝑥3 + 𝛽̂33𝑥3
2                       (3) 

Source: Ossia and Big-Alabo [15] 

𝑦̂ (𝑥1, 𝑥2, 𝑥3) =  𝛽̂0 + 𝛽̂1𝑥1 + 𝛽̂2𝑥2 + 𝛽̂3𝑥3 + 𝛽̂12𝑥1𝑥2 + 𝛽̂13𝑥1𝑥3 + 𝛽̂11𝑥1
2               (4) 

Source: Iwundu M. P. [7]. 

𝑦̂ (𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝛽̂0 + 𝛽̂1𝑥1 + 𝛽̂2𝑥2 + 𝛽̂3𝑥3 + 𝛽̂4𝑥4 + 𝛽̂12𝑥1𝑥2 + 𝛽̂23𝑥2𝑥3 + 𝛽̂11𝑥1
2 + 𝛽̂44𝑥4

2       (5) 

Source: Iwundu and Otaru [5]. 

When constructing custom designs using JMP Pro 14 sta-

tistical software, some general rules are followed. The rules 

include stating the model, defining the region of interest, 

selecting the number of experimental runs, choosing an op-

timality criterion, and from a set of candidate points, choosing 

the design points one would like to consider, and which 

should satisfy the goal of the experimentation. 

2.2. Design Optimality and Design Efficiencies 

Design optimality are mathematical functions that reflect 

the objective of the experimental designs and are closely 

related to Design efficiency, being a function of design opti-

mality. As in the literature of optimal design of experiments, 

design efficiencies are measures used to assess, evaluate, and 

compare the qualities of different experimental designs. They 

offer experimenters insight into the performance of designs 

such that the most appropriate designs can be selected for a 

given experimental objective Iwundu and Cosmos [8]. In this 

study, the A-, D-, G-, design efficiencies, and the Average 

Variance of Prediction (AVP) are employed to assess the 

qualities of the custom A-, D-, and I-optimal designs for 

non-standard second-order models. 

2.2.1. A-efficiency 

The A-efficiency is related to minimizing the individual 

variances of the model parameters. It allows comparison of 

designs across different sample sizes and is given b 

𝐴 − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
100 ∗𝑝

𝑡𝑟𝑎𝑐𝑒 [𝑁(𝑋′𝑋)−1]  
            (6) 

where (𝑋′𝑋)−1 is the variance-covariance matrix, N is the 

sample size, and p denotes the number of parameters in the 

model. 

2.2.2. D-efficiency 

The D-efficiency as in Goos and Jones [3] compares the 

determinant of the information matrix of a design to an “ideal” 

determinant related to an orthogonal design. The 

D−efficiency serves as a useful tool for evaluating the quality 

of the estimated model parameters and it is usually expressed 

as a percent. The D-efficiency is symbolically written as 
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𝐷 − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 100 ∗  
|𝑋′𝑋|

1
𝑝

𝑁

               (7) 

where p denotes the number of parameters in the model, N is 

the sample size, and |𝑋′𝑋| is the determinant of the infor-

mation matrix. 

2.2.3. G-efficiency 

The G-efficiency which is expressed in percentage com-

pares the maximum value of the scaled prediction variance 

within the design region to its theoretical minimum variance, 

𝑝  Iwundu M. [6]. Myers et al. [14] stated that “the 

G-efficiency emphasizes the use of designs for which the 

maximum scaled prediction variance, 𝑣(𝑥)  in the design 

region is not too large”. That is, it handles worst-case predic-

tion variance. Iwundu M.P. [7] defined the G-efficiency as 

𝐺 − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 100  (
𝑝

N∗ SPV𝑚𝑎𝑥
)         (8) 

where 𝑝 denote the parameters in the model, 𝑁 represent the 

design size, and SPV𝑚𝑎𝑥 is the maximum scaled prediction 

variance at any point, 𝑥 in the design region and is given as; 

SPV = 𝑁𝑥′(𝑋′𝑋)−1𝑥 

2.2.4. I-optimal Designs and the Average Variance of 

Prediction (AVP) 

Johnson et al. [9] defined the Average Variance of Predic-

tion as “a single measure of prediction performance that is 

created by the integration of the prediction variance”. The 

I-optimal designs are designs that minimize the Average 

Variance of Prediction. Hence, the smaller the value of the 

AVP, the better the design. According to Goos et al. [4], it can 

be computed as 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  
∫ 𝑓′(𝑥)𝑀−1𝑓(𝑥)𝑑𝑥𝜒

∫ 𝑑𝑥𝜒

= 
1

∫ 𝑑𝑥𝜒

 ∙ 𝑡𝑟 [𝑀−1𝐵]                             (9) 

over the design region 𝜒. 

where 𝐵 =  ∫ 𝑓(𝑥)𝑓′(𝑥)𝑑𝑥 
𝜒

is the moment matrix over the 

design region. 

3. Numerical Illustrations 

3.1. Custom A Designs and Efficiency Values 

Case 1: An Illustration using Equation (2)  

Considering the three-variable non-standard second-order 

model having p = 5 model parameters given in Equation (2), 

an N-point custom design is obtained from a continuum of 

points Ν̃ on the design space, Ω. The design size N satisfies 

𝑝 ≤ 𝑁 ≤  Ν̃. The N points of the custom designs need not be 

discrete as in the case of standard designs. This allows flexi-

bility in the choice of the points. However, if an experimenter 

desires to have a discrete point, a mathematical approximation 

to an integer-valued number is recommended. The construc-

tion of custom designs requires specifying the model, the 

number of factors to be included, the input variable con-

straints, and the number of center points. The center point is a 

very important factor as it helps in the estimation of pure error, 

thereby providing information at a minimum cost and also in 

detecting model adequacy or inadequacy through a test for 

lack of fit. 

For this illustration, 𝑁 = 9, 10, . . . 15 well as 𝑁 = 27 de-

sign points are considered. The choice of each 𝑁 is to allow a 

good understanding of the effect of small-sized designs. In 

this section, the custom designs are created to satisfy the 

A-optimality criterion. The custom A-optimal designs for 

𝑁 = 9, 10, 11, 12, 13, 14, 15, 𝑎𝑛𝑑 27, with 𝑛𝑐 = 1 are given 

as; 

𝜉9 =

(

 
 
 
 
 
 

0 1 1
1 −1 −1
0 1 −1
0 0 0
−1 −1 1
0 −1 1
−1 1 −1
0 −1 −1
1 1 1 )

 
 
 
 
 
 

  

𝜉10 =

(

 
 
 
 
 
 
 

1 −1 −1
1 1 1

−0.08 −1 −1
−1 1 1
0 −1 1
−1 1 −1
0 1 1
0 0 0
0 1 −1
−1 −1 1 )

 
 
 
 
 
 
 

  

𝜉11 =

(

 
 
 
 
 
 
 
 

−1 −1 −1
1 1 1
0 1 1
0.03 −1 1
1 −1 −1

−0.03 1 −1
−1 1 −1
0 −1 −1
1 1 −1
0 0 0
−1 −1 1 )
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𝜉12 =

(

 
 
 
 
 
 
 
 
 

1 −1 −1
−1 −1 1
−1 1 −1
1 1 1
0 −1 −1
−1 −1 1
0 1 1
1 −1 1
0 1 −1
0 0 0
0 −1 1
0 −1 1 )

 
 
 
 
 
 
 
 
 

  

𝜉13 =

(

 
 
 
 
 
 
 
 
 
 

0 0 0
1 1 1
−1 −1 −1
−1 1 −1
1 1 −1
0.03 −1 1
1 −1 −1
−1 1 1
0 −1 −1
−1 −1 1
0 1 −1

−0.04 1 −1
0 1 1 )

 
 
 
 
 
 
 
 
 
 

  

𝜉14 =

(

 
 
 
 
 
 
 
 
 
 
 

1 −1 1
0 0 0
1 −1 −1
0.07 1 −1
1 1 1
−1 −1 1
0 1 1
1 1 −1
−1 1 −1
0 1 1
0 −1 −1
−1 1 −1
0 −1 −1

−0.05 −1 1 )

 
 
 
 
 
 
 
 
 
 
 

  

𝜉15 =

(

 
 
 
 
 
 
 
 
 
 
 
 

−1 −1 1
1 −1 1
0 0 0
0 1 −1
0 −1 1
−1 −1 −1
1 1 −1
−1 1 1
1 −1 1
0 1 −1
0 −1 1
−1 1 −1
0 −1 −1
1 −1 −1
0 1 1 )

 
 
 
 
 
 
 
 
 
 
 
 

  

𝜉27 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 −1 −1
0 −1 1
0 1 −1
0 1 1
0 −1 1
0 −1 1
−1 1 −1
0 0 0
0 1 −1
−1 1 1
1 −1 −1
1 −1 −1
0 −1 −1
1 1 −1
−1 1 −1
1 1 1
1 −1 1
1 1 1
−1 −1 1
0 −1 −1
1 −1 1
0 1 1
0 1 1
−1 −1 −1
−1 −1 −1
0.03 1 −1
−1 −1 1 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Case 2: An Illustration using Equation (3) 

The illustration considers a three-variable non-standard 

model with 6 parameters given in Equation (3). For 𝑁 =

9, 10, . . . 15 and 27, the custom A-optimal designs for each 

of the N design points with 𝑛𝑐 = 1 is given as; 

𝜉9 =

(

 
 
 
 
 
 

0 0 0
1 1 1
−1 1 0
1 1 −1
−1 −1 1
−1 1 0
−1 −1 −1
1 −1 0
1 −1 0 )

 
 
 
 
 
 

  

𝜉10 =

(

 
 
 
 
 
 
 

1 1 0
−1 1 1
−1 1 −1
0 0 0
−1 −1 −0.05
1 −1 −1
1 −1 1
−1 −1 0
1 1 0
1 −1 −1 )
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𝜉11 =

(

 
 
 
 
 
 
 
 

1 1 −0.04
1 −1 −1
−1 1 −1
−1 1 1
1 1 0
−1 −1 0
1 −1 1
−1 1 −1
0 0 0
1 −1 −1
−1 −1 0 )

 
 
 
 
 
 
 
 

  

𝜉12 =

(

 
 
 
 
 
 
 
 
 

0 −1 1
0 0 0
−1 −1 0
1 1 1
−1 1 0
−1 1 1
1 1 0
1 −1 −1
1 1 −1
1 −1 0.01
−1 1 −1
−1 −1 −1 )

 
 
 
 
 
 
 
 
 

  

𝜉13 =

(

 
 
 
 
 
 
 
 
 
 

1 1 −1
0 0 0
−1 1 0
1 −1 0
1 −1 1
1 1 0
−1 1 −1
1 −1 −1
−1 −1 0
−1 −1 1
−1 1 1
1 1 1
−1 −1 −1)

 
 
 
 
 
 
 
 
 
 

  

𝜉14 =

(

 
 
 
 
 
 
 
 
 
 
 

−1 −1 0
1 1 0
1 −1 −1
1 −1 0
−1 −1 0
−1 −1 −1
0 0 0
1 −1 1
1 1 1
−1 1 0
−1 1 −1
1 1 −1
−1 1 1
−1 −1 1 )

 
 
 
 
 
 
 
 
 
 
 

  

𝜉15 =

(

 
 
 
 
 
 
 
 
 
 
 
 

1 1 1
1 1 0
−1 −1 0
1 1 0
−1 1 0
−1 −1 −1
1 −1 −1
0 0 0
1 1 −1
1 −1 1
−1 −1 1
−1 −1 0
−1 1 −1
−1 1 1
1 −1 0 )

 
 
 
 
 
 
 
 
 
 
 
 

  

𝜉27 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 1 1
0 0 0
−1 −1 −1
−1 −1 1
1 1 1
1 −1 −1
−1 1 −1
1 −1 1
1 1 0
1 1 0
−1 1 0
1 1 0
1 1 −1
1 −1 1
−1 1 0
1 −1 0
−1 −1 −1
−1 1 −1
−1 −1 0
1 −1 0
−1 1 1
−1 −1 0
−1 −1 0
1 1 −1
−1 1 1
1 −1 −1
−1 −1 1 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Case 3: An Illustration using Equation (4) 

The illustration considers a three-variable non-standard 

model with 7 parameters given in Equation (4). For 𝑁 =

9, 10, . . . , 15, and 27, the custom A-optimal designs for the N 

design points with 𝑛𝑐 = 1 are given as; 

𝜉9 =

(

 
 
 
 
 
 

0 −1 1
−1 1 0.15
−1 −1 −1
0 1 −1
0 0 0
1 1 1
−1 −1 1
1 −0.35 −1
1 −1 1 )
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𝜉10 =

(

 
 
 
 
 
 
 

0 0 0
0 1 −1
0 −1 1
1 −1 −0.37
−1 1 1
−1 −1 −1
1 1 1
−1 −1 1
−1 1 −1
1 1 −1 )

 
 
 
 
 
 
 

  

𝜉11 =

(

 
 
 
 
 
 
 
 

−1 −1 1
1 1 −1
0 1 1
−1 1 −1
1 1 1
0 −1 −1
−1 1 1
0 0 0
1 −1 −1
−1 −1 −1
1 −1 1 )

 
 
 
 
 
 
 
 

  

𝜉12 =

(

 
 
 
 
 
 
 
 
 

1 1 −1
0 0 0
−1 −1 −1
−1 −1 1
−1 1 1
1 −1 1
−1 1 −1
0 −1 −0.29
1 1 1
0 0 1
0 1 −1
1 −1 −1 )

 
 
 
 
 
 
 
 
 

  

𝜉13 =

(

 
 
 
 
 
 
 
 
 
 

1 −1 −1
−1 1 −1
1 1 −1
−1 1 1
−1 −1 −1
0 1 1
0 0 0
0 1 −1
0 −1 1
1 1 1
−1 −1 1
1 −1 1
0 −1 −1)

 
 
 
 
 
 
 
 
 
 

  

𝜉14 =

(

 
 
 
 
 
 
 
 
 
 
 

1 1 1
0 −1 1
0 −1 −1
0 0 0
0 1 −1
0 1 1
1 −1 1
1 1 −1
−1 −1 1
−1 −1 −1
−1 1 1
0 −1 −1
1 −1 −1
−1 1 −1)

 
 
 
 
 
 
 
 
 
 
 

  

𝜉15 =

(

 
 
 
 
 
 
 
 
 
 
 
 

1 1 −1
1 −1 1
−1 −1 −1
0 1 −1
1 −1 −1
0 −1 −1
−1 1 1
−1 1 −1
0 −1 1
0 0 0
−1 −1 1
0 1 1
0 −1 −1
1 1 1
0 1 1 )

 
 
 
 
 
 
 
 
 
 
 
 

  

𝜉27 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 1 −1
0 −1 −1
0 1 −1
0 −1 1
1 1 1
0 −1 −1
1 −1 1
−1 −1 1
0 1 −1
−1 −1 −1
0 1 1
−1 1 −1
−1 −1 −1
0 −1 1
1 −1 1
−1 1 −1
0 −1 −1
−1 1 1
0 1 1
1 −1 −1
0 1 1
0 0 0
−1 −1 1
1 1 −1
1 −1 −1
−1 1 1
1 1 1 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Case 4: An Illustration using Equation (5) 

The illustration considers a four-variable non-standard 

model with 9 parameters, given in Equation (5). 

For 𝑁 = 13, 14, . . . , 18, 21 and 25 the custom A-optimal 

designs for the N design points with 𝑛𝑐 = 1 are given as; 

𝜉13 =

(

 
 
 
 
 
 
 
 
 
 

−1 −1 1 1
0 1 −1 0
−1 1 −1 0.1
1 1 1 0
−1 1 1 −1
1 1 −1 −1
1 −1 1 0
0 1 1 1
0 −1 1 −1
0 0 0 0
0 −1 −1 −0.28
1 −1 −1 1
−1 −1 −1 0 )

 
 
 
 
 
 
 
 
 
 

  

http://www.sciencepg.com/journal/ajtas


American Journal of Theoretical and Applied Statistics http://www.sciencepg.com/journal/ajtas 

 

99 

𝜉14 =

(

 
 
 
 
 
 
 
 
 
 
 

1 1 1 0
0 −1 −1 −1
1 −1 1 0
−1 1 1 −1
0 1 1 0
−1 1 −1 0
−1 −1 −1 −0.06
0 1 0 1
0 −1 1 −1
1 1 −1 −1
−1 −1 1 1
0 0 0 0
0 1 −1 0
1 −1 −1 1 )

 
 
 
 
 
 
 
 
 
 
 

  

𝜉15 =

(

 
 
 
 
 
 
 
 
 
 
 
 

0 −1 1 −1
0 −1 −1 −1
1 −1 −1 1
−1 −1 −1 0
−1 −1 1 1
0 1 −1 1
0 0 0 0
0 −1 0 0
1 1 −1 −1
−1 1 −1 0
0 1 0 0
0 1 1 1
−1 1 1 −1
1 1 1 0
1 −1 1 0 )

 
 
 
 
 
 
 
 
 
 
 
 

  

𝜉16 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

0 −1 −1 0
−1 −1 1 0
1 1 1 0
−1 −1 −1 1
−1 1 −1 0
−1 1 1 −1
1 −1 −1 0
1 −1 1 1
0 −1 1 0
0 1 1 1
1 1 −1 −1
0 0 0 0
0 1 −1 1
0 1 0 0
0 −1 1 −1
0 −1 −1 −1)

 
 
 
 
 
 
 
 
 
 
 
 
 

  

𝜉17 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

−1 1 −1 0
0 1 −1 −1
0 −1 1 0
0 −1 −1 0
1 −1 −1 1
0 1 −1 1
0 0 0 0
1 1 −1 0
0 −1 −1 0
−1 1 1 0
0 1 1 −1
0 −1 1 0
0 1 1 1
−1 −1 −1 −1
1 −1 1 −1
1 1 1 0
−1 −1 1 1 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

𝜉18 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−1 −1 −1 −1
−0.1 1 1 0
−1 1 −1 0
−1 1 1 −1
−1 1 −1 1
1 −1 1 −1
0 −1 1 1
0 −1 −1 0
1 1 1 1
0 0 0 0
0 −1 1 0
1 1 −1 0
−1 −1 1 0
0 1 1 0
0 −1 −1 1
1 −1 −1 0
0 1 −1 −1
0 1 −1 −1)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

𝜉21 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0
−1 −1 −1 0
0 −1 1 0
0 1 1 1
0 1 −1 0
−1 1 1 −1
0 1 −1 0
1 −1 −1 1
1 1 1 0
−1 1 1 0
1 −1 −1 −1
−1 −1 1 1
−1 1 −1 1
0 −1 −1 1
1 1 1 1
1 −1 1 0
1 1 −1 −1
0 1 1 −1
0 −1 1 −1
0 −1 −1 0
−1 −1 −1 −1)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

𝜉25 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0
1 1 −1 −1
1 −1 −1 1
0 0 −1 1
0 −1 1 −1
0 −1 −1 −1
1 −1 −1 −1
1 1 1 1
0 1 −1 0
−1 −1 1 1
0 1 1 0
0 −1 1 0
−1 −1 −1 0
−1 −1 −1 0
−1 1 1 0
1 1 −1 0
−1 −1 1 −1
0 −1 1 1
−1 1 −1 1
−1 1 −1 −1
0 −1 −1 0
0 1 −1 0
1 −1 1 −0.06
1 −1 1 0
0 1 1 −1 )
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Table 1 below shows the results of the efficiency measures 

and AVP values of the custom A-optimal designs for 

non-standard models obtained from John’s Macintosh Project 

(JMP) statistical software. The result shows that the 

A-optimal design which is a function of the A-optimality 

criterion had the highest A-efficiency values compared to the 

custom D- and I-optimal designs. The result also showed that 

the A-optimal design had high D- and G-efficiency values 

(above 50%). This means that the A-optimal designs are also 

D- and G- efficient. Lastly, the result of the AVP showed that 

the design produced smaller prediction variances compared to 

the D-optimal design. Hence, they are more appropriate for 

prediction than the custom D-optimal designs. 

Table 1. Efficiency Measures of A-optimal designs for Non-standard models. 

Number 

of factors 

(𝒌) 

Number of 

parameters 

(𝒑) 

Number of design 

points (N) 
D-efficiency (%) G-efficiency (%) A-efficiency (%) 

Average Vari-

ance of Predic-

tion (AVP) 

3 5 

9 61.32132 74.07407 48.30918 0.323333 

10 61.77937 71.05871 47.20342 0.298081 

11 62.80609 79.03737 46.8311 0.27298 

12 61.17072 69.28839 47.25415 0.25488 

13 63.43927 92.31354 47.5631 0.231168 

14 63.14763 60.47968 48.04881 0.208608 

15 64.68813 80 48.9083 0.191468 

27 65.15811 83.22195 49.24383 0.105461 

3 6 

9 58.11824 66.66667 47.61905 0.351111 

10 58.70716 60.00001 46.51177 0.326014 

11 59.90774 58.2449 46.2004 0.300606 

12 61.81098 89.0614 47.27213 0.271109 

13 65.1364 85.2071 49.01293 0.242778 

14 63.71614 82.20551 49.09363 0.22378 

15 62.64027 73.84615 49.5941 0.205357 

27 65.38677 85.82375 49.74763 0.114556 

3 7 

9 57.44635 57.60852 43.30225 0.432184 

10 61.98699 58.6284 44.39605 0.385574 

11 66.98854 84.84848 46.28099 0.341667 

12 64.36823 81.63543 48.55338 0.29485 

13 64.6098 80.76923 50.48077 0.256667 

14 62.73272 77.35849 50.10183 0.237669 

15 61.21732 74.66667 50.09585 0.219246 

27 64.47407 80.65844 50.9151 0.121501 

4 9 

13 57.28011 65.42829 42.28961 0.352008 

14 56.75164 80.16152 42.78596 0.323169 

15 56.19102 74.49687 43.4051 0.295676 

16 56.00956 73.65331 43.93409 0.273887 

17 55.95376 70.8992 44.33641 0.25519 

18 56.24087 70.28544 43.77273 0.24469 
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Number 

of factors 

(𝒌) 

Number of 

parameters 

(𝒑) 

Number of design 

points (N) 
D-efficiency (%) G-efficiency (%) A-efficiency (%) 

Average Vari-

ance of Predic-

tion (AVP) 

21 58.53976 72.40759 43.80603 0.208551 

25 57.67718 79.99164 44.21452 0.176553 

 

3.2. Custom D Designs and Efficiency Values 

Case 1 

Considering the 5-parameter non-standard model in three 

variables stated in Equation (2). For 𝑁 = 9, 10, . . . 15 and 27, 

the custom D-optimal designs for each of the N design points 

are given as; 
 

𝜉9 =

(

 
 
 
 
 
 

1 −1 1
−1 1 1
0 0 0
−1 −1 −1
1 −1 1
1 1 −1
0 1 1
0 −1 −1
1 1 −1)

 
 
 
 
 
 

 

𝜉10 =

(

 
 
 
 
 
 
 

1 1 −1
−1 1 1
0 0 0
−1 1 −1
1 −1 1
−1 −1 −1
1 −1 −1
0.07 1 −1
1 1 1

−0.07 −1 1 )

 
 
 
 
 
 
 

 

𝜉11 =

(

 
 
 
 
 
 
 
 

1 1 −1
1 1 1
−1 1 −1
0 0 0
−1 −1 1
0 −1 1
−1 −1 −1
0 1 −1
1 −1 1
−1 1 1
1 −1 −1)

 
 
 
 
 
 
 
 

 

𝜉12 =

(

 
 
 
 
 
 
 
 
 

1 −1 1
0 −1 −1
0 −1 1
1 1 1
1 1 −1
−1 1 1
1 −1 −1
−1 1 −1
−1 −1 −1
0 1 −1
0 0 0
−1 −1 1 )

 
 
 
 
 
 
 
 
 

 

𝜉13 =

(

 
 
 
 
 
 
 
 
 
 

1 −1 −1
0 1 −1
−1 1 1
1 1 −1
0 1 1
1 −1 1
−1 −1 −1
0 −1 1
−1 −1 1
0 −1 −1
−1 1 −1
1 1 1
0 0 0 )

 
 
 
 
 
 
 
 
 
 

; 

𝜉14 =

(

 
 
 
 
 
 
 
 
 
 
 

−1 −1 1
1 −1 1
−1 1 −1
0 0 0
−1 1 1
1 1 −1
0 1 1
0 −1 −1
0 −1 −1
−1 −1 −1
1 1 −1

−0.05 1 1
−1 −1 −1
1 −1 1 )

 
 
 
 
 
 
 
 
 
 
 

 

𝜉15 =

(

 
 
 
 
 
 
 
 
 
 
 
 

1 −1 1
−1 1 −1
0 1 1
−1 −1 1
1 1 1
1 −1 −1
0 −1 −1
1 1 1
0 0 0
−1 −1 −1
−0.04 −1 1
1 −1 −1
−1 −1 1
−1 1 −1
0.05 1 −1)
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𝜉27 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 1 1
−1 1 −1
1 1 −1
0 −1 −1
1 −1 −1
0 −1 −1
0 0 0
1 −1 1
−1 1 1
0 1 1
−1 1 −1
0 −1 1
1 −1 1
−1 −1 1
1 1 1
−1 −1 1
1 −1 1

−0.02 1 1
−1 −1 −1
0 −1 −1
−1 1 −1
1 1 1
1 1 −1
−1 −1 1
−1 −1 −1
1 −1 −1
0 1 −1)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Case 2 

The illustration considers a three-variable non-standard 

model with 6 parameters given in Equation (3). For 𝑁 =

9, 10, . . . 15 and 27, the custom D-optimal designs for each 

of the N design points with 𝑛𝑐 = 1 is given as; 

𝜉9 =

(

 
 
 
 
 
 

−1 −1 1
−1 1 1
1 −1 −1
−1 −1 −1
1 1 1
−1 1 −1
1 −1 1
0 0 0
1 1 −1)

 
 
 
 
 
 

 

𝜉10 =

(

 
 
 
 
 
 
 

−1 1 −1
−1 1 1
1 −1 1
−1 −1 1
1 −1 −1
0 0 0
−1 −1 −1
1 1 −1
1 1 1
1 1 0 )

 
 
 
 
 
 
 

 

𝜉11 =

(

 
 
 
 
 
 
 
 

0 0 0
−1 −1 −1
−1 1 0
1 −1 −1
−1 1 −1
1 −1 1
−1 1 1
1 −1 0
1 1 −1
−1 −1 1
1 1 1 )

 
 
 
 
 
 
 
 

 

𝜉12 =

(

 
 
 
 
 
 
 
 
 

−1 −1 1
−1 −1 −1
−1 1 −1
1 −1 1
1 1 1
1 1 −1
−1 1 0
1 −1 −1
1 1 0
−1 1 1
0 0 0
−1 −1 1 )

 
 
 
 
 
 
 
 
 

 

𝜉13 =

(

 
 
 
 
 
 
 
 
 
 

−1 1 0
1 −1 0
−1 −1 1
−1 1 1
−1 −1 1
−1 −1 −1
−1 1 −1
0 0 0
1 −1 −1
1 −1 1
−1 −1 −1
1 1 1
1 1 −1)

 
 
 
 
 
 
 
 
 
 

 

𝜉14 =

(

 
 
 
 
 
 
 
 
 
 
 

1 1 −1
−1 1 −1
−1 −1 −1
1 −1 1
−1 1 1
1 −1 1
−1 −1 0
−1 1 1
−1 −1 1
1 −1 −1
1 1 0
1 −1 −1
0 0 0
1 1 1 )
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𝜉15 =

(

 
 
 
 
 
 
 
 
 
 
 
 

−1 1 −1
−1 −1 0
0 0 0
−1 1 −1
1 −1 −1
1 −1 −1
−1 1 1
1 1 0
1 −1 1
1 1 −1
−1 1 1
−1 −1 1
1 1 1
1 −1 1
−1 −1 −1)

 
 
 
 
 
 
 
 
 
 
 
 

 

𝜉27 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 1 1
−1 1 −1
1 1 −1
0 −1 −1
1 −1 −1
0 −1 −1
0 0 0
1 −1 1
−1 1 1
0 1 1
−1 1 −1
0 −1 1
1 −1 1
−1 −1 1
1 1 1
−1 −1 1
1 −1 1

−0.02 1 1
−1 −1 −1
0 −1 −1
−1 1 −1
1 1 1
1 1 −1
−1 −1 1
−1 −1 −1
1 −1 −1
0 1 −1)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Case 3 

The illustration considers a three-variable non-standard 

model with 7 parameters given in Equation (4). For 𝑁 =

9, 10, . . . , 15, and 27, the custom D-optimal designs for the N 

design points with 𝑛𝑐 = 1 are given as; 

𝜉9 =

(

 
 
 
 
 
 

−1 −1 1
1 1 −1
1 1 1
0 0 0
1 −1 −1
−1 1 1
−1 −1 −1
−1 1 −1
1 −1 1 )

 
 
 
 
 
 

 

𝜉10 =

(

 
 
 
 
 
 
 

−1 1 −1
0 0 0
−1 −1 −1
1 1 1
−1 1 1
1 1 −1
1 −1 −1
0 −1 1
−1 −1 1
1 −1 1 )

 
 
 
 
 
 
 

 

𝜉11 =

(

 
 
 
 
 
 
 
 

−1 −1 −1
−1 1 1
1 1 −1
0 1 1
1 1 1
−1 1 −1
0 0 0
1 −1 1
0 −1 −1
−1 −1 1
1 −1 −1)

 
 
 
 
 
 
 
 

 

𝜉12 =

(

 
 
 
 
 
 
 
 
 

−1 −1 −1
1 1 −1
−1 −1 1
0 −1 1
−1 1 −1
0 1 −1
−1 1 1
1 −1 1
0 0 0
1 1 1
1 −1 −1
−1 −1 −1)

 
 
 
 
 
 
 
 
 

 

𝜉13 =

(

 
 
 
 
 
 
 
 
 
 

−1 −1 −1
−1 1 1
1 1 1
0 0 0
−1 −1 −1
1 −1 −1
0 1 −1
−1 −1 1
0 −1 1
1 1 −1
1 −1 1
−1 1 −1
1 −1 −1)
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𝜉14 =

(

 
 
 
 
 
 
 
 
 
 
 

0 1 −1
1 −1 1
−1 1 1
0 0 0
1 −1 −1
1 −1 −1
−1 −1 1
−1 −1 −1
−1 1 −1
−1 1 1
1 1 −1
1 1 1
−1 −1 −1
0 −1 1 )

 
 
 
 
 
 
 
 
 
 
 

 

𝜉15 =

(

 
 
 
 
 
 
 
 
 
 
 
 

0 −1 1
0 1 −1
−1 −1 −1
1 1 1
1 −1 −1
1 −1 −1
−1 1 1
−1 −1 −1
0 0 0
−1 −1 1
−1 1 1
1 1 −1
1 1 1
1 −1 1
−1 1 −1)

 
 
 
 
 
 
 
 
 
 
 
 

 

𝜉27 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−1 −1 −1
−1 −1 1
−1 1 1
1 −1 −1
−1 1 −1
−1 1 −1
0 −1 1
1 −1 1
1 −1 −1
−1 −1 −1
1 1 −1
1 1 1
−1 1 1
−1 1 1
0 1 −1
0 1 −1
1 −1 1
0 −1 1
1 −1 −1
0 0 0
−1 −1 −1
1 1 1
1 1 1
1 1 −1
−1 −1 1
−1 −1 1
1 1 −1)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Case 4 

The illustration considers a four-variable non-standard 

model with 9 parameters given in Equation (5). For 𝑁 =

13, 14, . . . , 18, 21, and 25 the custom D-optimal designs with 

𝑛𝑐 =  1 are given as; 

𝜉13 =

(

 
 
 
 
 
 
 
 
 
 

−1 −1 1 0
0 −1 −1 1
0 −1 1 1
−1 −1 −1 −1
−1 1 −1 0
1 1 1 0
0 0 0 0
1 1 −1 1
0 1 −1 −1
1 −1 1 −1
1 −1 −1 0
0 1 1 −1
−1 1 1 1 )

 
 
 
 
 
 
 
 
 
 

 

𝜉14 =

(

 
 
 
 
 
 
 
 
 
 
 

−1 1 1 0
1 1 1 −1
−1 −1 1 0
0 1 −1 1
−1 −1 −1 1
0 0 0 0
1 −1 −1 −0.04
0.13 −1 1 −1
1 1 −1 0
−1 1 −1 −1
0 1 1 1
1 −1 1 1
0 −1 −1 −1
−1 −1 1 −1 )

 
 
 
 
 
 
 
 
 
 
 

 

𝜉15 =

(

 
 
 
 
 
 
 
 
 
 
 
 

1 −1 1 −1
−1 1 −1 1
0 −1 1 1
1 −1 −1 0
1 1 1 −1
−1 −1 −1 1
−1 −1 1 0
0 0 0 0
1 1 −1 0
0 1 −1 −1
1 −1 −1 1
1 1 1 1
−1 1 1 0.08
−1 −1 −1 −1
−1 1 1 −1 )
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𝜉16 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

0 1 −1 −1
1 −1 1 1
−1 1 1 1
−1 −1 −1 1
1 −1 1 0
0 −1 1 1
−1 1 1 −1
−1 −1 1 −1
1 −1 −1 −1
0 −1 −1 0
1 1 1 −1
0 0 0 0
1 1 1 0.03
−1 −1 1 −0.08
−1 1 −1 0
1 1 −1 1 )

 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝜉17 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 1 −1 1
1 −1 −1 −1
−1 1 −1 0
1 1 1 −1
0 −1 −1 1
−1 −1 −1 1
0 1 1 1
0 1 −1 −1
−1 −1 −1 −1
−1 −1 1 0
−1 1 1 −1
0 0 0 0
1 −1 1 1
0 −1 1 −1
1 −1 −1 0
1 1 1 0
−1 1 1 1 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝜉18 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−1 −1 −1 1
0 1 −1 1
−1 1 1 0
−1 1 −1 1
−1 −1 1 −1
1 1 −1 −1
1 −1 1 0

−0.11 1 1 −1
1 1 1 −1
1 1 1 1
1 −1 −1 −1
1 −1 −1 1
0 −1 −1 −1
−1 −1 −1 0
0 0 0 0
1 1 −1 0
0 −1 1 1
−1 1 −1 −1)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝜉21 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−1 1 −1 −1
1 −1 1 −1
1 1 −1 0
−1 −1 −1 −1
−1 1 1 1
−1 −1 1 1
1 1 1 −1
−1 −1 1 0
1 −1 1 1
1 1 1 −1
−1 1 −1 −1
0 −1 −1 −1
0 −1 1 −1
1 1 −1 1
0 1 1 1
0 1 −1 1
1 −1 −1 1
−1 −1 −1 1
0 0 0 0
−1 1 1 0
1 −1 −1 0 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝜉25 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 −1 −1 0
1 −1 −1 1
0 1 1 1
1 1 −1 1
1 1 1 −1
1 1 1 0

−0.06 −1 1 0
−1 −1 −1 0
1 −1 1 0
0 1 −1 1
−1 −1 −1 1
−1 1 −1 0
−1 1 1 −1
−1 1 1 1
−1 −1 1 1
−1 −1 1 −1
1 −1 1 1
1 −1 1 −1
−1 1 −1 −1
1 1 −1 −1
0 −1 −1 −1
0 −1 −1 −1
1 1 1 0
0 0 0 0
−1 1 −1 0 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Results of the efficiency measures and AVP values of cus-

tom A-optimal designs for non-standard models are tabulated 

in Table 2 below. From the result, it is observed that for each 

of the non-standard models, the custom D-optimal design 

which is constructed to satisfy the D-optimality criterion 

produces high (above 50%) D-efficiency values which in-

crease slightly as the design size increases. This indicates that 

the custom D-optimal designs are D-efficient that is, they 

produce designs that minimize the variance and covariance of 

the parameter estimates. In terms of G-efficiency, the result 

showed that they performed very well with G-efficiency 

values higher than their related D-efficiency values. But, for 

the A-efficiencies, the result revealed low efficiency values 
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(< 50%). This means that the D-optimal design does not fare 

well in terms of A-efficiency. Again, the AVP values of the 

D-optimal design are high compared to other custom designs. 

This implies that the D-optimal design is not appropriate for 

prediction purposes. 

Table 2. Efficiency Measures of Custom D-optimal designs for Non-standard models. 

Number 

of factors 

(𝒌) 

Number of 

parameters 

(𝒑) 

Number of design 

points (N) 
D-efficiency (%) G-efficiency (%) A-efficiency (%) 

Average Vari-

ance of Predic-

tion (AVP) 

3 5 

9 63.59863 74.07407 43.01075 0.603333 

10 64.0722 82.85965 41.49901 0.336215 

11 64.82191 77.92208 40.40404 0.313889 

12 65.13999 71.9697 43.18182 0.269883 

13 65.88084 92.30769 47.09576 0.22889 

14 65.59811 90.40147 45.50675 0.21977 

15 65.64985 93.83373 44.2516 0.210578 

27 67.00405 97.65296 44.96045 0.115005 

3 6 

9 62.85394 53.33333 25.39683 0.697222 

10 64.75482 60 34.83871 0.455556 

11 66.07711 87.27273 43.63636 0.327778 

12 65.6757 81.25 41.6 0.315171 

13 65.66822 76.0181 39.96828 0.303042 

14 65.9953 71.42857 38.6681 0.29142 

15 66.61465 80 37.64706 0.280093 

27 67.79991 95.2381 43.31013 0.134206 

3 7 

9 66.04419 62.22222 28.28283 0.711111 

10 66.74042 70 37.89474 0.469444 

11 66.98854 84.84848 46.28099 0.341667 

12 66.51685 77.77778 44.14414 0.328968 

13 66.51036 85.34107 42.47021 0.41627 

14 66.70295 79.24528 41.07579 0.303968 

15 67.23916 80 40 0.291667 

27 68.71212 86.9281 39.11621 0.167515 

4 9 

13 59.49831 82.48773 39.16084 0.376323 

14 59.18462 77.6559 38.06724 0.363664 

15 59.39471 67.37465 32.53158 0.408748 

16 59.76306 81.60601 38.02047 0.326061 

17 60.1428 77.51599 36.68532 0.320008 

18 60.21471 75.41108 35.99499 0.311856 

21 61.47599 82.6686 34.77996 0.283406 

25 61.47872 89.83834 37.93374 0.213251 
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3.3. Custom I Design and Efficiency Values 

Case 1 

Consider the three-variable non-standard second-order 

model having p = 5 model parameters given in Equation (2), 

for 𝑁 = 9, 10, . . . 15 and 27, the custom I-optimal designs 

for each of the N design points are given as; 

𝜉9 =

(

 
 
 
 
 
 

0 0 0
1 1 −1
−1 1 1
0 1 −1
0 1 1
0 −1 −1
1 −1 1
0 −1 1
−1 −1 −1)

 
 
 
 
 
 

, 𝜉10 =

(

 
 
 
 
 
 
 

1 −1 −1
−1 1 −1
−1 −1 1
−0.08 −1 1
0 −1 −1
0 1 1
1 1 1
0.15 1 −1
−1 1 −1
0 0 0 )

 
 
 
 
 
 
 

 

𝜉11 =

(

 
 
 
 
 
 
 
 

0 0 0
0 1 −1
0 −1 1
−1 −1 −1
−0.15 −1 1
1 −1 −1
−1 1 1
1 1 1
0.08 1 −1
1 −1 −1
−1 1 −1)

 
 
 
 
 
 
 
 

, 𝜉12 =

(

 
 
 
 
 
 
 
 
 

−1 1 −1
0 1 1
0 0 0
1 −1 1
−1 −1 −1
0 −1 1
−1 −1 1
0 −1 −1

−0.18 1 1
1 −1 −1
0.26 1 −1
1 1 1 )

 
 
 
 
 
 
 
 
 

 

𝜉13 =

(

 
 
 
 
 
 
 
 
 
 

0.48 −1 −1
0 −1 −1

−0.3 1 1
1 1 1
−1 1 −1
1 1 −1
−1 −1 −1
0 0 0
1 −1 1
0 1 1
−1 −1 1
0 1 −1
0 −1 1 )

 
 
 
 
 
 
 
 
 
 

 𝜉14 =

(

 
 
 
 
 
 
 
 
 
 
 

−1 1 −1
−1 −1 1
0 −1 1
−1 −1 1
0.14 1 1
0.2 1 1
1 −1 −1
1 1 1
0 −1 −1
−1 1 −1
0 −1 −1
0 0 0
0 1 −1
1 −1 −1)

 
 
 
 
 
 
 
 
 
 
 

 

𝜉15 =

(

 
 
 
 
 
 
 
 
 
 
 
 

0 1 −1
0 1 −1
0 0 0
1 1 −1
0 −1 1
1 −1 1
0 1 1
1 −1 1
−1 −1 −1
0 −1 −1
−1 −1 −1
1 1 −1
0 −1 1
−1 1 1
−1 1 1 )

 
 
 
 
 
 
 
 
 
 
 
 

 𝜉27 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 −1 1
1 −1 −1
0 −1 −1
0 0 0
1 −1 1
−1 1 1
0 1 −1
0 1 −1
1 −1 −1
0 1 1
0 −1 1
1 1 1
1 1 −1
0 −1 1
1 1 −1
0 −1 −1
−1 −1 −1
0 1 −1
1 1 1
−1 −1 −1
−1 −1 −1
−1 1 1
−1 −1 1
−0.05 1 1
−1 1 −1
0 1 −1
0 −1 1 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Case 2 

The illustration considers a three-variable non-standard 

model with 6 parameters given in Equation (3). For 𝑁 =

9, 10, . . . 15 and 27, the custom I-optimal designs for each of 

the N design points with 𝑛𝑐 = 1 is given as; 

𝜉9 =

(

 
 
 
 
 
 

1 1 0
−1 1 −1
−1 1 1
−1 −1 0
−1 −1 0
1 1 0
0 0 0
1 −1 1
1 −1 −1)

 
 
 
 
 
 

 𝜉10 =

(

 
 
 
 
 
 
 

−1 1 −1
−1 1 1
1 1 0.19
1 1 −1
−1 −1 −0.01
1 1 0
1 −1 −1
0 0 0
−1 −1 0
1 −1 1 )

 
 
 
 
 
 
 

 

𝜉11 =

(

 
 
 
 
 
 
 
 

0 0 0
−1 −1 0.26
−1 1 1
−1 1 −1
1 1 1
1 1 −0.17
−1 −1 −1
1 −1 −1
−1 −1 0
1 1 0
1 −1 1 )

 
 
 
 
 
 
 
 

 𝜉12 =

(

 
 
 
 
 
 
 
 
 

1 1 0
1 −1 1
1 1 −1
−1 −1 0
1 −1 0
0 1 1
1 −1 −1
−1 1 −1
−1 1 0.14
0 0 0
−1 −1 −1
−1 −1 1 )
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𝜉13 =

(

 
 
 
 
 
 
 
 
 
 

−1 −1 1
1 −1 0
−1 1 1
−1 1 −1
1 −1 1
1 −1 −1
1 1 −1
−1 1 0
1 1 1
1 1 0
−1 −1 0
−1 −1 −1
0 0 0 )

 
 
 
 
 
 
 
 
 
 

 𝜉14 =

(

 
 
 
 
 
 
 
 
 
 
 

−1 1 1
−1 1 −1
1 −1 −1
−1 −1 1
0 0 0
1 1 −1
−1 −1 0
1 1 0
−1 −1 −1
1 −1 0
−1 −1 0
1 −1 1
−1 1 0
1 1 1 )

 
 
 
 
 
 
 
 
 
 
 

 

𝜉15 =

(

 
 
 
 
 
 
 
 
 
 
 
 

−1 −1 1
1 1 0
−1 −1 0
−1 −1 0
−1 1 −1
1 1 −1
−1 1 1
−1 −1 −1
1 −1 −1
1 −1 0
−1 1 0
1 1 0
0 0 0
1 1 1
1 −1 1 )

 
 
 
 
 
 
 
 
 
 
 
 

 𝜉27 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 −1 −1
−1 1 1
−1 −1 −1
−1 −1 0
−1 −1 1
−1 −1 0
−1 1 1
1 −1 0
−1 −1 0.12
1 −1 1
−1 1 −1
1 −1 1
−1 −1 0
1 1 −1
1 1 0
1 1 0
1 1 0
0 0 0
1 −1 −1
1 −1 0
−1 −1 −1
−1 1 0
−1 1 1
1 1 0
−1 1 −1
−1 1 0
1 1 1 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Case 3 

Considering the three-variable non-standard model with 7 

parameters, given in Equation (4), for 𝑁 = 9, 10, . . . , 15, and 

27, the custom I-optimal designs for the N design points with 

𝑛𝑐 = 1 are given as; 

𝜉9 =

(

 
 
 
 
 
 

−1 −1 1
0 −1 −1
−1 −1 −1
1 −1 1
1 0.35 −1
0 0 0
1 1 1
−1 1 −0.37
0 1 1 )

 
 
 
 
 
 

 

𝜉10 =

(

 
 
 
 
 
 
 

1 −1 1
−0.82 1 1
−1 1 −1
1 0 −1
0 1 −1
1 1 1
0 −1 1
0 −1 −1
−1 −1 0
0 0 0 )

 
 
 
 
 
 
 

 𝜉11 =

(

 
 
 
 
 
 
 
 

−1 −1 −1
0.34 1 1
0 −1 −1
−1 1 −1
−1 1 1
−1 −1 1
1 1 −1
0.53 −1 −1
0 1 1
0 0 0
1 −1 1 )

 
 
 
 
 
 
 
 

 

𝜉12 =

(

 
 
 
 
 
 
 
 
 

−1 −1 1
1 −1 −1
0 0 0
0 −1 1
−1 1 −1
1 −1 1
0.18 1 1
0 −1 −1
1 1 −0.24
0 1 −1
−1 −1 −1
−1 1 1 )

 
 
 
 
 
 
 
 
 

; 𝜉13 =

(

 
 
 
 
 
 
 
 
 
 

−1 −1 −1
1 1 −1
0 −1 −1
1 −1 −1
−1 1 −1
−1 −1 1
0 1 1
−1 1 1
0 1 −1
0 0 0
1 1 1
0 −1 1
1 −1 1 )

 
 
 
 
 
 
 
 
 
 

, 

𝜉14 =

(

 
 
 
 
 
 
 
 
 
 
 

−1 1 −1
−1 1 1
0 0 0
1 1 −1
0 −1 −1
1 −1 1
−1 −1 −1
0 1 −1
0 1 1
0 1 1
1 1 1
0 −1 1
1 −1 −1
−1 −1 1 )

 
 
 
 
 
 
 
 
 
 
 

 𝜉15 =

(

 
 
 
 
 
 
 
 
 
 
 
 

0 −1 1
−1 −1 1
−1 1 −1
−1 −1 −1
0 −1 1
0 −1 −1
1 −1 −1
0 1 −1
1 1 1
1 1 −1
1 −1 1
0 1 −1
0 0 0
−1 1 1
0 1 1 )

 
 
 
 
 
 
 
 
 
 
 
 

, 

𝜉27 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−1 −1 1
−1 1 −1
0 −1 −1
1 1 −1
1 −1 −1
1 −1 1
1 1 1
−1 −1 −1
−1 −1 −1
1 1 −1
0 −1 1
0 −1 −1
0 1 −1
0 0 0
0 1 1
0 −1 1
−1 −1 1
−1 1 −1
0 1 −1
1 −1 1
0 1 1
1 −1 −1
1 1 1
−1 1 1
−1 1 1
0 −1 −1
0 1 1 )
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Case 4 

This illustration considers the 9-parameter non-standard 

model in four variables given in Equation (5). For 𝑁 =

13, 14, . . . , 18, 21 and 25 the custom I-optimal designs for the 

N design points with 𝑛𝑐 =  1 are given as; 

𝜉13 =

(

 
 
 
 
 
 
 
 
 
 

−1 1 −1 0.03
−1 −1 1 −0.57
0 −1 −1 −1
0 0 0 0
0 1 1 1
1 −1 −1 0
0 −1 1 0
0 1 −1 0
−1 1 1 −1
−1 −1 −1 1
1 −1 1 1
1 1 1 0
1 1 −1 −1 )

 
 
 
 
 
 
 
 
 
 

  

𝜉14 =

(

 
 
 
 
 
 
 
 
 
 
 

0 0 0 0
1 −1 1 −1
0 1 1 −1
1 1 −1 1
−1 −1 1 0
−1 1 1 1
0 1 −1 −1
1 −1 −1 0
0 −1 −1 0.42
0 1 0 0
−1 −1 −1 −1
−1 1 −1 −0.04
1 1 1 0
0 −1 1 1 )

 
 
 
 
 
 
 
 
 
 
 

 

𝜉15 =

(

 
 
 
 
 
 
 
 
 
 
 
 

−1 −1 −1 1
1 −1 1 1
0 1 1 1
0 −1 0 0
−1 1 1 −1
0 0 0 0
−1 1 −1 0
0 1 0 0
0 −1 −1 −1
1 −1 −1 0
1 1 1 0
0 −1 1 −1
1 1 −1 −1
0 1 −1 1
−1 −1 1 0 )

 
 
 
 
 
 
 
 
 
 
 
 

 𝜉16 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

0 1 −1 0
−1 1 1 1
0 −1 1 −1
0 0 0 0
0 1 1 0
0 −1 −1 1
−1 −1 1 0
0 1 0 0
0 −1 1 1
1 −1 1 0
−1 1 −1 −1
1 1 −1 1
−1 −1 −1 0
1 1 1 −1
0 −1 −1 −1
1 −1 −1 0 )

 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝜉17 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 1 −1 −1
−1 1 1 1
0 0 0 0
0 1 −1 0
0 −1 −1 0
0 1 1 −1
0 −1 −1 1
1 1 −1 1
−1 1 −1 0
1 1 1 0
−1 −1 −1 0
1 −1 −1 −1
0 −1 1 0
0 1 1 0
0 −1 1 1
1 −1 1 0
−1 −1 1 −1)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 

𝜉18 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 −1 −1 −1
0 1 −1 1
1 1 −1 −1
−1 −1 1 0
0 −1 1 −1
−1 1 −1 0
0 −1 1 0

−0.25 −1 −1 −1
−1 −1 −1 1
0 −1 −1 0
0 1 1 1
0 0 0 0
−1 1 1 −1
1 1 1 0
1 −1 1 1
1 −1 −1 0
0 1 1 0
0 1 −1 0 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 𝜉21 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 1 −1 0
0 −1 1 −1
1 1 −1 −1
0 1 −1 −1
1 −1 1 −1
0 1 −1 1
1 −1 1 1
−1 −1 1 1
0 −1 −1 1
−1 1 −1 0
0 1 1 0
1 1 1 1
0 −1 −1 0
0 1 1 0
−1 1 1 −1
−1 −1 1 0
0 0 0 0
−1 −1 −1 −1
1 −1 −1 0
0 −1 1 0
−1 1 −1 1 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝜉25 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0
−1 1 −1 0
−1 −1 −1 −1
1 1 1 0
0 1 −1 1
0 1 −1 −1
−1 −1 1 1
1 −1 1 0
1 1 −1 −1
1 1 −1 0
0 −1 −1 0
−1 1 −1 0
0 1 1 0
0 1 1 1
−1 −1 1 1
0 −1 1 0

−0.17 −1 −1 0
0 −1 −1 0
1 −1 1 −1
−1 1 1 −1
1 −1 −1 1
0 −1 1 −1
0 1 1 0
0 1 −1 1
1 −1 −1 1 )
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Table 3 below shows the result of the efficiency measures 

and AVP values of custom I-optimal designs for non-standard 

models. From the result, it is observed that the I-optimal de-

sign performed well (above 50%) in terms of D- and 

G-efficiency. It also performed well in terms of A-efficiency 

and the values in most cases are similar to that of A-optimal 

design. Thus, it can be said that the I-optimal designs are D, A, 

and G efficient. Also, from the result, it was observed that the 

I-optimal designs had the smallest average variance of pre-

diction compared to other custom designs thus, making it a 

good choice for prediction. 

Table 3. Efficiency Measures of I-optimal designs for Non-standard models. 

Number 

of factors 

(𝒌) 

Number of 

parameters 

(𝒑) 

Number of design 

points (N) 
D-efficiency (%) G-efficiency (%) A-efficiency (%) 

Average Vari-

ance of Predic-

tion (AVP) 

3 5 

9 61.32132 74.07407 48.30918 0.323333 

10 61.81643 66.77774 46.9793 0.297374 

11 62.87172 66.42324 46.73369 0.272618 

12 61.87742 72.80956 45.73915 0.249532 

13 61.96404 69.21453 46.55971 0.226197 

14 63.18278 85.76883 47.71272 0.208198 

15 64.68813 80 48.9083 0.191468 

27 65.15931 83.36667 49.24094 0.105458 

3 6 

9 58.11824 66.66667 47.61903 0.351111 

10 58.86504 59.82963 46.20002 0.324658 

11 60.30197 58.83521 45.5094 0.297414 

12 61.88824 89.08194 47.11375 0.270582 

13 65.1364 85.2071 49.01293 0.242778 

14 63.71614 79.12088 49.09363 0.22378 

15 62.64027 73.84615 49.5941 0.205357 

27 62.43969 68.53836 49.21173 0.113965 

3 7 

9 57.69692 51.59114 43.3002 0.429518 

10 53.80632 53.15039 41.48247 0.378536 

11 58.18175 54.23887 43.80323 0.328886 

12 59.70504 84.75852 46.83452 0.292052 

13 64.6098 80.76923 50.48077 0.256667 

14 62.73272 77.35849 50.10183 0.237669 

15 61.21732 70 50.09585 0.219246 

27 64.47407 77.77778 50.9151 0.121501 

4 9 

13 57.21456 77.00078 41.93254 0.350826 

14 56.7514 77.71704 42.55255 0.322023 

15 56.19102 74.49687 43.4051 0.295676 

16 56.00956 73.65331 43.93409 0.273887 

17 55.95376 70.8992 44.33641 0.25519 

18 56.33369 68.83533 43.70558 0.244087 
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Number 

of factors 

(𝒌) 

Number of 

parameters 

(𝒑) 

Number of design 

points (N) 
D-efficiency (%) G-efficiency (%) A-efficiency (%) 

Average Vari-

ance of Predic-

tion (AVP) 

21 58.53976 72.40759 43.80603 0.208551 

25 57.08659 66.10358 43.44466 0.175454 

 

4. Discussion of Findings 

Based on the computation of the efficiency properties of the 

custom D-, A-, and I-optimal design for the non-standard 

models, it is seen that the D, G, and A-efficiency values of the 

custom designs are less than 100%. This is in line with Kiefer 

and Wolfowitz [11] who proposed that the optimality criteria 

consider experimental design as an N-point design. Therefore, 

optimal designs will generally be less than 1.0 (or 100%). 

Again, from the results, it is observed that without much 

loss in efficiency, small-size designs are as efficient as 

large-size designs. For example, the custom A 13-point design 

for the 5-parameter non-standard model has the highest 

G-efficiency of 92.31354%, D-efficiency of 63.43927%, 

A-efficiency of 47.5631%, and AVP of 0.231168. In compar-

ison, the custom A 27-point design has a G-efficiency of 

65.15811%, D-efficiency of 83.22195%, A-efficiency of 

49.24383%, and AVP of 0.105461. Hence, small-size eco-

nomical designs can be selected to meet specific research 

objectives. 

For custom A-optimal designs, the result in Table 1 showed 

that the custom A-optimal designs had the highest 

A-efficiency value compared to other custom designs. This 

owes to the fact that the design is created based on the 

A-optimality criterion thus, they are A-efficient. In terms of 

D-efficiency, it was observed that the values were moderately 

high but less than those of a D-optimal design. This implies 

that custom A-optimal designs are also D-efficient. Hence, 

they can be used to identify both the main factors and inter-

actions in second-order experiments. Again, custom 

A-optimal design is efficient in terms of G-efficiency. This is 

in contrast with Wong W.K. [20]. This implies that custom 

A-optimal designs minimize the worst-case prediction vari-

ance. Lastly, the result of the Average Variance of Prediction 

(AVP) showed a smaller variance compared to that of the 

D-optimal design for each of the design points. Hence, the 

custom A-optimal design is more suitable for prediction than 

the custom D-optimal design. Therefore, for the non-standard 

models, we can say that the custom A-optimal design is 

D-efficient, G-efficient, and A-efficient, and is more suitable 

for prediction than the custom D-optimal design. 

The result in Table 2 showed that the custom D-optimal 

design which was created based on the D-optimality criterion 

had the highest D-efficiency values compared to other custom 

designs. This implies that custom D-optimal designs are good 

at estimating all the parameters of interest in the model. Also, 

it was observed that the custom D-optimal design produced 

the best G-efficiency (60% and above) compared to other 

custom designs. This means that the custom D-optimal de-

signs are G-optimal hence, minimize the worst-case predic-

tion variance. This corresponds with the work of Kiefer and 

Wolfowitz [11] who proposed that a D-optimal design is also 

G-optimal. 

In terms of A-efficiency and Average Variance of Predic-

tion (AVP), the result revealed that the D-optimal design does 

not fare well. This is contrary to the work of Wong W. K. [20] 

that D-optimal designs are A-efficient. The A-efficiency val-

ues were generally less than 50% this implies that the 

D-optimal design is not an appropriate design for identifying 

only the significant factors in a model. Also, the AVP values 

were high compared to other custom designs. Indicating high 

prediction variance thereby, making the D-optimal design 

unsuitable for prediction purposes. 

Table 3 shows the efficiency and AVP values of the 

I-optimal design. From the result, it is observed that custom 

I-optimal design performed moderately well (above 50%) in 

terms of D- and G-efficiency. In terms of A-efficiency, they 

performed as well as the A-optimal design. This corresponds 

with the work of Jones and Goos [10], and Rady et al. [16]. 

For the AVP values, it is observed that the custom I-optimal 

design had the lowest values compared to custom D- and 

A-optimal designs. This corresponds with the works of 

Johnson et al. [9], Jones and Goos [10], and Yeh et al. [21], 

that the I-optimal design has a lower average prediction var-

iance than the D-optimal design. This justifies the fact that the 

I-optimality criterion seeks designs that minimize the Average 

Variance of Prediction. Generally, for non-standard models, 

the I-optimal designs performed well in terms of D-efficiency, 

G-efficiency, and A-efficiency and have the smallest Average 

Variance of Prediction. 

From the results of the analysis, it is appropriate to de-

scribe custom designs as efficient designs for fitting se-

cond-order non-standard models. As earlier mentioned, 

custom designs are suitable in situations that involve 

non-standard models, fewer experimental runs, and irregu-

larly shaped design regions where standard designs are not 

suitable to use or not economical to utilize. The efficiency 

value is a function of the optimality criterion. The custom 

D-optimal design performed best in terms of D- and 

G-efficiency. Custom A-optimal design had the best 
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A-efficiency value. The custom I-optimal design had the 

smallest average variance of prediction. 

5. Conclusion 

The efficiency of custom D-, A-, and I-optimal designs 

have been thoroughly examined and demonstrated in this 

research work in second-order non-standard models under 

varying design points. This study is applied mostly in situa-

tions where the experimenter knows the model. Also, in situ-

ations where some constraints (such as time, materials, and 

resources) may limit the use of commonly known classical 

designs. Thus, custom designs can be used in non-standard 

models to effectively construct designs that align with the goal 

of the experiment and available resources. 

Design efficiency metrics such as D-, G-, A-efficiency, and 

AVP are functions of design optimality criterion and they help 

experimenters evaluate the quality of designs based on the 

specific goal and objectives of the experiment even before the 

experiment is conducted. 
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